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Abstract
The effect of discrete charges embedded inside a dielectric film on the surface of an ionic
substrate is examined. The analytical solution for the potential distribution is presented in the
cases of diluted and concentrated electrolyte solutions. The image-charge contribution to the
film stability is derived for charges randomly distributed at one of the film boundaries. It is
shown that the image-charge component of the disjoining pressure can dominate over the other
types of surface forces either for very thick films or for film thicknesses less than or comparable
to the average charge separation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding of the polarization effects and the electrostatic
forces arising due to the presence of ionized and polar
molecules or charged nanoparticles in the vicinity of interfaces
is of considerable interest both in science and technology.
During the last decades the theoretical analysis of this problem
was given in numerous papers (see for example [1–12]),
taking into account uniform and nonuniform smeared charge
distribution as well as discrete charges. The main attention
was attracted by the systems containing the charges embedded
into an aqueous electrolyte half-space or thin film as the
most relevant to colloid science, biophysics and biochemistry.
For such systems the real charges are dressed by a cloud of
counterions and coions, that is, the polarization effects and the
electrostatic forces are significantly screened. At the same time
the case of charges located inside a liquid insulator film on the
top of a conducting, semiconducting, ionic liquid or aqueous
electrolyte substrate may be of great interest on one hand for
the studying the stability of such films. On the other hand, the
interface charging can be effectively used in nanotechnological
applications, for example in the controlling of thickness of
nonpolar and nonionic coatings. Note that for charges located

1 Author to whom any correspondence should be addressed.

in apolar or weakly polar dielectric media in the vicinity
of a substrate with finite Debye length the screening of
electrostatic effects will also take place, but to an essentially
lower extent than for charges in electrolytes. In this paper
we consider the surface forces arising in thin nonsymmetric
nonpolar liquid interlayers due to discrete charges embedded
inside the interlayer in the vicinity of one film boundary. So
we will omit here the analysis of electrostatic interaction of
film boundaries, related to trivial Coulomb interaction between
charges on opposite sides of an interlayer across nonpolar
media. The asymmetry of the free charge arrangement
inside the films is characteristic for nonpolar wetting films
grown on top of semiconductor substrates that have undergone
mechano-chemical treatment (for example triboelectrization).
Another way to produce such charging is to introduce into the
system charged nanoparticles with different affinities to film
interfaces. For thick hydrocarbon films on aqueous solution
substrates, hydrophobic charged nanoparticles will adsorb on
the oil–solution interface or the oil–air interface depending
on the total potential of interaction (including van der Waals
and image-charge contributions) between the particle and film
boundaries.

In our paper for clarity we will restrict ourselves by
consideration of a thin film confined by ionic liquid or
an electrolyte aqueous solution substrate and another fluid
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(that might be air or another immiscible nonpolar liquid).
The polarization of contacting media by the discrete charges
embedded inside thin film will be treated by the method of
images. It will be shown that the arising polarization effects
lead to the appearance of an additional contribution to the
disjoining pressure in the film associated with image-charge
forces. To evaluate quantitatively the role of this contribution
to the film stability in section 2 we solve the Poisson equations
and derive the distribution of electrostatic potential induced
by the single charge in the film. The analytical solution
will be presented for the cases of diluted and concentrated
solutions. In section 3 the net potential and image-charge force
contribution will be calculated for a disordered ensemble of
charges at one of the film boundaries. Finally we discuss our
results.

2. Electrostatic potential induced in the dielectric
film by a single point charge

Our model system contains a film of a dielectric with thickness
h and dielectric permittivity ε1, confined between two semi-
infinite media with dielectric permittivities ε2 and ε3, as
shown in figure 1. Medium 2 represents an electrolyte
solution or ionic liquid, while the two others are apolar or
weakly polar media. A point charge q is located in the film
at distance d above the 1–2 interface, and we choose the
Cartesian coordinate system with the origin coinciding with
the charge location and the z axis normal to the interface.
The electrostatic field induced by point charge is screened in
the electrolyte solution due to a cloud of soluted salt ions,
and is affected by the polarization of phase boundaries. The
distribution of ion charges in the solution is considered here as
a continuous one. Within the Debye–Huckel approximation,
valid for moderate charges, the ion density is proportional to
the screened electrostatic potential inside the solution. Thus
the electrostatic potential in all contacting media is described
by the following set of Poisson equations:

�ϕ(1) = −4π

ε1
qδ(x, y, z) − d < z < −d + h

�ϕ(2) − κ2ϕ(2) = 0 z < −d

�ϕ(3) = 0 z > −d + h

(1)

where δ(x, y, z) is the Dirac’s delta-function and κ is the
inverse Debye length for the electrolyte solution.

By virtue of the cylindrical symmetry of the problem, it
is expedient to use a 2D Fourier transform for x and y axes,
which leads to the system of ordinary differential equations

d2 f (1)(z)

dz2
− λ2 f (1)(z) = −2q

ε1
δ(z)

− d < z < −d + h

d2 f (2)(z)

dz2
− (κ2 + λ2) f (2)(z) = 0 z < −d

d2 f (3)(z)

dz2
− λ2 f (3)(z) = 0 z > −d + h

(2)

q

z = -d  

z = -d+h 

Figure 1. The point charge q in the vicinity of an interface between
an insulator film and electrolyte solution.

with boundary conditions

z → ∞ f (3) → 0

z → −∞ f (2) → 0

z = h − d f (1) = f (3)

z = h − d
ε1∂ f (1)

∂z
= ε3∂ f (3)

∂z

z = −d f (1) = f (2)

z = −d
ε1∂ f (1)

∂z
= ε2∂ f (2)

∂z
.

(3)

Solving the above boundary problem we find the Fourier
transform of the potential in the film

f (1)(z) = q

λε1
{exp(−λ|z|) + β13 exp[λ(z − 2(h − d))]

+ β ′
12 exp[−λ(z + 2d)]

+ β ′
12β13 exp[−λ(2h − |z|)]}{1 − β ′

12β13 exp(−2λh)}−1

(4)

where β13 = (ε1 − ε3)/(ε1 + ε3);

β ′
12 =

(
ε1 − ε2

√
1 + κ2/λ2

) / (
ε1 + ε2

√
1 + κ2/λ2

)
. (5)

By using the identity

1

1 − β ′
12β13 exp(−2λh)

=
∞∑

k=0

(β ′
12β13)

k exp(−2kλh), (6)

we can represent (4) as a sum of contributions from the charge
itself and its sequential images in confining phases:

f (1)(z) = q

λε1

∞∑
k=0

{(β ′
12β13)

k exp[−λ(|z| + 2kh)]

+ β ′
12(β

′
12β13)

k exp[−λ(z + 2d + 2kh)]
+ β13(β

′
12β13)

k exp[−λ(−z − 2d + 2(k + 1)h)]
+ (β ′

12β13)
k+1 exp[−λ(2(k + 1)h − |z|)]}. (7)

To compute the potential distribution across the film,
one needs to perform the inverse 2D Fourier transform of
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equation (7). Due to the cylindrical symmetry it reduces to
the Hankel transform:

ϕ(1)(ρ, z) =
∫ ∞

0
f (1)(λ, z)J0(ρλ)λ dλ

= q

ε1

∫ ∞

0
J0(ρλ) dλ

∞∑
k=0

{(β ′
12β13)

k exp[−λ(|z| + 2kh)]

+ β ′
12(β

′
12β13)

k exp[−λ(z + 2d + 2kh)]
+ β13(β

′
12β13)

k exp[−λ(−z − 2d + 2(k + 1)h)]
+ (β ′

12β13)
k+1 exp[−λ(2(k + 1)h − |z|)]} (8)

where ρ = (x2 + y2)1/2 and J0(ρλ) is the zero-order Bessel
function of the first kind.

In the general case, due to the dependence of β ′
12 on

λ (cf equation (5)), the integral in equation (8) cannot be
expressed in analytical functions and has to be evaluated
numerically. However, taking into account the fact that this
integral is determined mainly by those values of wavevector λ

for which the exponential terms in the integrand are close to
unity, the further simplification of equation (8) might be based
on the peculiarities of function β ′

12(λ) (figure 2).
Note that we are dealing with the case of a low dielectric

film on an electrolyte substrate, so that ε2 > ε1. For this
case β ′

12(λ) monotonically varies between −1 for λ � κ and
β12 = (ε1 − ε2)/(ε1 + ε2) for λ � κ , with a rather marked
switch between the two asymptotic regimes at κ ≈ λ.

Having this in mind, the simple analytical asymptotics
can be derived from equation (8) for the potential of the
electrostatic field induced in the dielectric film by single point
charge, located near the interface with the electrolyte solution:

ϕ(1)(ρ, z) = q

ε1

∞∑
k=0

(β̃12β13)
k

{
1√

ρ2 + (|z| + 2kh)2

+ β̃12√
ρ2 + (z + 2d + 2kh)2

+ β13√
ρ2 + [−z − 2d + 2(k + 1)h]2

+ β̃12β13√
ρ2 + [2(k + 1)h − |z|]2

}
(9)

where the β̃12 value depends on the approximation conditions.
In the simplest case, for the analysis when ε2 � ε1, it is
possible to put β̃12 = −1.

The same result is valid when the inequality

2(h − d)κ � 1 (10)

holds. Condition (10) is the consequence of the simultaneous
requirements for smallness of arguments of exponential func-
tions in (8) and for holding of the inequality

√
1 + κ2/λ2 � 1

in (5). Evidently, the condition (10) for highly concentrated
solutions is satisfied already at small film thicknesses and thus
might be applied for the analysis of electrostatic potentials and
interaction forces in the case of polymolecular wetting films.
At the same time, the lowering of electrolyte concentration
reduces the range of film thicknesses for which the approxi-
mation β̃12 = −1 might be considered as sufficiently close.

Figure 2. Parameter β ′
12 as a function of λ for different values of

inverse Debye length κ : 104 (1), 105 (2), 106 (3), 107 (4) and
108 cm−1 (5). Calculations were performed using equation (5) for
ε1 = 2; ε2 = 80.

The case of thin films on the surface of diluted electrolytes
with 2κ(h − d) � 1, when simultaneously for the entire range
of λ values, essential for integral (8), the relation λ � κ holds,
represents another asymptotic limit. One may then put

β̃12 ≈ (ε1 − ε2)/(ε1 + ε2) = β12. (11)

Note by the way that the film thickness in (9) tending to infinity
leads to the well known equation for the electrostatic field
created by a point charge located near the interface between
two semi-infinite dielectrics.

The analysis of equation (9) shows that the distribution of
the electrostatic potential around the point charge inside the
film ceases to be spherically symmetric. In the vicinity of the
interface between two media, characterized by β̃1i < 0, the
electric field in the film is screened by the polarization (image)
charges at the interface and the ion charges in the medium i
(if present). The higher the dielectric permittivity or/and the
inverse Debye length of medium i , the more pronounced the
effect of potential decreasing. In contrast, for β̃1i > 0, the field
of polarization charges increases the potential in the film. The
effect of potential alteration is long ranged, although it is more
pronounced in the vicinity of the interface. For illustration,
in figure 3 we have presented the results of the calculation
of the distribution of the normalized potential, obtained as
the ratio of the potential calculated from equation (9) to the
potential created by the equivalent point charge in the bulk
dielectric medium, for different charge positions inside the
film. The calculations were performed for three positions of
charge inside a film of hydrocarbon liquid (ε1 = 2), confined
by air (ε3 = 1) from one side and ionic liquid (ε2 = 16,
however β̃12 = −1 due to large κ) or dielectric medium with
dielectric permittivity ε2 = 16 and κ = 0 from the other side.
For comparison, the distribution of potential is also given for
the charge placed near the interface between two semi-infinite
media. The alteration from unity of the ratio of the potential
inside the film to those in the bulk liquid is characterized by
grey levels.
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Figure 3. The distribution of normalized potential, obtained as the ratio of the potential described by equation (9) to the potential created by
the equivalent point charge in the bulk dielectric medium, for different charge positions, d , inside the 1 nm thick film of dielectric with ε1 = 2
confined by air (ε3 = 1) and ionic liquid (ε2 = 16). Panels (a) and (b) correspond to d = 0.1 nm, (d) and (e) to d = 0.9 nm, (g) and (h) to
d = 0.5 nm. For comparison, the cases of charge in the semi-infinite dielectric at distance d = 0.1 nm from the interface with ionic liquid (c)
and with air (f) are also presented. Distributions (a), (c), (d) and (g) were calculated for β̃12 = β12 while (b), (e) and (h) for β̃12 = −1.
The magnitude of the normalized potential is represented by the grey level, as indicated by the scale in panel (i).

An important point which should be discussed here
is related to the validity of equation (9) in view of the
applicability of the linearized equation (1) for medium 2.
Indeed, the Poisson equation �ϕ(2)−κ2ϕ(2) = 0 for electrolyte
media is the result of linearization of the Poisson–Boltzmann
equation under the assumption qϕ(2)/kT � 1. Definitely
for arbitrary position of charge inside the dielectric film with
low dielectric permittivity the linearization of the Poisson–
Boltzmann equation in electrolyte media is not generally valid.
At the same time, for two limiting cases considered here the
linearized form remains valid either owing to κ → 0 for diluted
solutions or owing to ϕ(2) → 0 as β̃12 → −1 for concentrated
ones.

3. Electrostatic potential and forces induced in the
dielectric film by the ensemble of point charges

Let us now consider the case of the set of disordered charges
attached to (adsorbed at) one of the interfaces, in the plane

z = 0 at distance d from the 1–2 interface, with an average
charge density σ = q/πρ2

0 . This corresponds to the situation
when one takes into account the influence of the thermal
motion resulting in the smoothing of discontinuous charge
density distribution. Then the total potential of the electrostatic
field at the location of a given charge might be calculated
using the cut-out disk model [12–14]. Since in the following
analysis we will be interested in the electrostatic field inside
the film only, for the sake of brevity and clarity we will omit
the superscript (1).

In the model, the charge density around the chosen point
charge is approximated by a step function

σ(ρ) =
{

0 0 < ρ < ρ0

σ = q/πρ2
0 ρ0 < ρ < ∞ (12)

where πρ2
0 is the average area per charge in the adsorption

layer. Consequently, the potential, ϕ , of the electric
field induced by all the real charges but the charge under
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consideration, and by all the image charges, at the location of
the given charge, is expressed as

ϕ(0, 0) = ϕ0(0, 0) + 2

ρ2
0

∫ ∞

ρ0

ϕ(ρ, 0)ρ dρ (13)

where ϕ0 is the potential of the field induced by all the images
of the given charge, and ϕ(ρ, 0) is the potential induced by
a point charge located at a distance ρ from the given charge
and by all its images. The latter potential is determined by
equation (9) with z = 0.

The energy of a given charge in the field induced by the
image charges and by the other real charges adsorbed at the
plane z = 0 might be computed as U1 = qϕ(0, 0). Then
the total electrostatic energy associated with the interaction
of adsorbed charges with the other real charges in the film
(superscript ch–ch) and with the image charges (ch–im) will
be given by

U = 1
2�U ch−ch

1 + �U ch−im
1 = �U ′

1 (14)

where the prime indicates the half-weighting of the potential
energy of interaction between the real charges in order to avoid
double counting of the contribution from each pair of charges;
� = σ/q = 1/πρ2

0 is the number of charges adsorbed per unit
of interfacial area.

The contribution, �el, of the energy of electrostatic
interactions to the disjoining pressure of the film (hereinafter
referred to as the image-charge component of the disjoining
pressure) is expressed as the thickness derivative of the total
potential electric energy of the system containing the thin
film [12]:

�el = − 1

�

d

dh

∫ ∫ ∫

V

u dV

= − 1

�

d

dh

(∫ ∫ ∫

V0

u dV +
∫ ∫ ∫

V f

u dV

)
(15)

where u is the density of potential electric energy, V , V0, and
V f are the total volume of the system and volumes of its bulk
and film parts, respectively, and � is the film area. The energy,
U , described by equation (14) is associated with the second
integral in (15). As for the thickness derivative of the first
integral, in the general case it will also be nonzero and is related
to the redistribution of ions in phase 2 in the image-charge field
due to its variation with film thickness changing. However,
in this paper we are interesting in quantitative analysis of
the image-charge component of disjoining pressure for two
limiting cases, namely, diluted solutions with κ → 0 and
concentrated ones with β̃12 → −1. For both cases the first
integral will vanish either due to negligible number of ions or
due to zero potential of image charges inside the concentrated
solution resulting from strong screening. Thus finally for
the image-charge component of the disjoining pressure in the
dielectric wetting film on the top of diluted or concentrated
electrolyte solution we will get

�im = − d

dh
(�U ′

1) = −�q
dϕ′



dh
(16)

where again the prime at ϕ indicates halving of the
contribution of the real charges to the potential induced at the
location of the given charge; however, since the real charge/real
charge energy contribution does not depend on film thickness,
it vanishes anyway upon differentiation. The second equality in
equation (16) accounts for the fact that in the systems analysed
in this paper the surface charge density (in other words, the
adsorbed amount �) is determined by the external conditions
and does not depend on the film thickness. Otherwise one
should consider in equation (16) the term proportional to
d�/dh as well.

Combining the equations (9), (13), and (16), and changing
the order of integration over ρ and differentiation with respect
to h, we get

�im = −�

{
q

dϕ0

dh
+ 2πσ

∫ ∞

ρ0

dϕ′(ρ, 0)

dh
ρ dρ

}

= qσ

ε1

∞∑
k=0

3∑
l=1

2blk

z2
lk

+ 4πσ 2

ε1

∞∑
k=0

3∑
l=1

blk zlk

(ρ2
0 + z2

lk)
1/2

(17)

where
b1k = 2(k + 1)(β̃12β13)

k+1

b2k = kβ̃12(β̃12β13)
k

b3k = β13(k + 1)(β̃12β13)
k

Z1k = 2(k + 1)h

Z2k = (2kh + 2d)

Z3k = (2kh + 2h − 2d).

(18)

The image-charge component of the disjoining pressure in
equation (17) is represented as a sum of two contributions,
associated with the interaction of the real charges with their
proper images of different order k in confining media (the first
term) and with images of all the other charges (the second
term).

4. Discussion and summary

The analysis of equation (17) shows that the significant
interactions arising between boundaries of the dielectric film
are associated with polarization effects, caused by the charges
embedded inside the film. The corresponding image-charge
component of the disjoining pressure for small film thicknesses
can amount to high values, comparable to or even greater
than the van der Waals component of the disjoining pressure.
For film thicknesses less than or comparable to the average
charge separation ρ0

√
π the main contribution to �im comes

from the summation of the first series which arises due to the
discreteness of charge distribution. At fixed value of each
charge this contribution is proportional to the number charge
density (figure 4) and strongly affected by charge position with
respect to the interfaces. Note that although each term in this
summation decays with the film thickness approximately as
h−2, the alternation of signs of contributions from images of
different orders (see figure 5) provides much faster decaying
of the disjoining pressure. Accurate calculations for small film
thicknesses on the basis of equation (17) need to account for
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Figure 4. The isotherms of the image-charge component of the
disjoining pressure for pentane wetting films on a surface of aqueous
solutions calculated with equation (17) for surface charge density
σ = 5 mC cm−2 (a), (b) and σ = 0.2 mC cm−2 (c), (d). Solid lines
correspond to neat water (β̃12 = β12 = −0.96) and dashed lines to
concentrated brine (β̃12 = −1). Calculations were performed for
charges adsorbed at the interface with the substrate (a), (c) and with
the air (b), (d) at distance d = 0.3 nm from the interface.

Figure 5. Contributions of images of different orders to the
image-charge component of the disjoining pressure.

at least images up to five to eight orders. It is also seen from
figure 5 that the greatest contributions might be associated with
the interaction of real charge with images of nonzero order.

For films essentially thicker than the average charge
separation the influence of charge discreteness vanishes and
the interface with adsorbed real charges as well as the surfaces
with image charges create the electric field characteristic for
the surfaces with smeared charge. So for such film thicknesses
the contribution of the first summation in equation (17) reduces
to zero, whereas the second term tends to a constant value,
making the disjoining pressure nearly independent of h. This
term is quadratic in average density of charges. Importantly,
although for physically reasonable values of charge densities

this second term is relatively small for thin films, its near
independence from film thickness provides the dominance of
the image-charge component of the disjoining pressure over
the other types of surface forces for thick films.

Summarizing this part of the discussion, it is necessary
to underline that the interface charging can be considered as a
powerful instrument for controlling the thickness of nonpolar
and nonionic coatings by variation of charge magnitude and
density both inside the coating and the substrate. This opens
new prospects for nanotechnological applications.

To conclude, we would like to discuss the possibility
of using thin wetting films of nonpolar liquids to check the
validity of theories of van der Waals forces. Traditionally
such films are supposed to be a good model for systems ruled
by dispersion (van der Waals) interactions only. At the same
time, numerous experiments reveal the strong deviation of
isotherms of disjoining pressure at small film thicknesses in
the above films from those predicted by the theory of van der
Waals forces. Such inconsistency is usually rationalized by the
roughness of the substrate (for review and discussion see [1]).
At the same time, the results of this study as well as [11, 12]
indicate that image-charge forces related either to the presence
at the interface of free charges or of the tiny amounts of polar
molecules also might be the cause of such deviations.
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